
Implementing your first
PostgreSQL extension:

From Coding to
Distribution

Burak Yücesoy Önder Kalacı

Who are we?

• Two engineers from Microsoft.

• Used to work for Citus Data (now acquired by
Microsoft).

• Earn our lives by developing PostgreSQL
extensions.

Who are we?

Outline

What is PostgreSQL Extension?

Why PostgreSQL is extendable?

What is extendable in PostgreSQL?

•Developing

•Debugging

•Testing

•Packaging

•Releasing

Life cycle of PostgreSQL extension development

What is PostgreSQL Extension?
• A PostgreSQL extension is a piece of software that adds functionality to

Postgres. Each extension bundles related objects together.

• Postgres 9.1 started providing official APIs to override or extend any
database module’s behavior.

• “CREATE EXTENSION extension_name;” dynamically loads these objects into
Postgres’ address space.

Example Extension: pg_cron
• A task scheduler inside the database; it allows to perform periodic jobs on

the database.

• Every Saturday at 03:30; delete old data

 psql> SELECT cron.schedule('30 3 * * 6', $$DELETE FROM events WHERE
event_time < now() - interval '1 week'$$);

• Every day at 10:00, run VACUUM

 psql> SELECT cron.schedule('0 10 * * *', $$VACUUM$$);

Why PostgreSQL is Extendable?
• Every decade brings new workloads for databases.

• The last decade was about capturing more data, in more shapes and form.

• Postgres has been forked by dozens of commercial databases for new
workloads. When you fork, your database diverges from the community.

• What if you could leverage the database ecosystem and grow with it?

What is Extendable in PostgreSQL?
You can override, cooperate with, or extend any combination of the following
database modules:

 Type system and operators

 User defined functions and aggregates

 Storage system and indexes

 Write ahead logging and replication

 Transaction engine

 Background worker processes

 Query planner and query executor

 Configuration and database metadata

Type system and operators
• PostgreSQL already has lots of different data types;

 bigint, text, timestampz, jsonb, …

• If you need a data type which doesn’t exist in PostgreSQL;

 You can define new type with CREATE TYPE command.

 You can add the types created by other people using extensions

• Some additional data types;

 ip-address, e-mail

Type system and operators

Type system and operators
• It is also possible to define (or overwrite) operators for the types you created.

• For example > or < operators can be meaningful for ip address data type.

• Or you can come up with completely new operator such as;

 Distance function for points; Point <-> Point

 Membership of point in Sphere; Point <.> Sphere

User defined functions and
aggregates
• You can create new function or aggregate using CREATE FUNCTION

command.

• If you are performing some operations frequently it may make sense to
implement them as function.

• Also if you defined new type, you can also create the functions to perform
specific things on the type you create.

User defined functions and
aggregates

What is Extendable in PostgreSQL?
You can override, cooperate with, or extend any combination of the following
database modules:

 Type system and operators

 User defined functions and aggregates

 Storage system and indexes

 Write ahead logging and replication

 Transaction engine

 Background worker processes

 Query planner and query executor

 Configuration and database metadata

Can be done in SQL

Needs to be done in lower lever like C

PostgreSQL
Extension
Development
Life Cycle

Developing

Debugging

Testing

Packaging

Releasing

Disclaimer

“Every problem is a
gift. Without them we
wouldn’t grow”

- Tony Robbins

Today’s Schedule for Extension
Development
• Today we will follow several steps to create a working prototype to represent

color information in database;

 Primitive approach with using text

 Composite type

 UDFs and operators for our type

 C level implementation

 Creation of custom nodes for our type

 Modifications to executor and planner

• You can follow the development from this repo

https://github.com/onderkalaci/pgcolor

PostgreSQL Internals: Datums
• Datums are PostgreSQL’s way of representing single value.

• Values are passed to or from PostgreSQL as Datums.

• It encapsulates the actual value and provides generic interface for all kinds
of value types.

• The code using the Datum has to know which type it is, since the Datum
itself doesn't contain that information.

• Conversion to and from Datum is made by helper functions;

 Int32GetDatum(int): Converts int value to Datum

 DatumGet32Int(Datum): Gets the int value stored in Datum

PostgreSQL Internals: Tuple
• Tuples have many different use-cases but most importantly are

representation of rows in the database.

• They are made up from Datums.

• Interactions with tuples are made by macros defined in PostgreSQL
codebase

PostgreSQL Internals: Memory
Context
• All memory allocations is handled by various memory contexts.

• You need to allocate memory by palloc() function instead of standard
malloc().

• There are multiple memory contexts with different lifetimes;

 TopMemoryContext

 CacheMemoryContext

 MessageMemoryContext

• More information at:
https://github.com/postgres/postgres/blob/master/src/backend/utils/mmgr/README

https://github.com/postgres/postgres/blob/master/src/backend/utils/mmgr/README

PostgreSQL Internals: Error
Reporting
• elog and ereport functions are used for error reporting.

• They are used to print user visible error messages, but more importantly;

 They rollback open transaction

 They release any allocated memory for the transaction/queries in related memory
contexts.

• It is even possible to extend the way error messages are handled in
PostgreSQL

• More information at:
https://github.com/postgres/postgres/blob/master/src/backend/utils/error/elog.
c#L3

https://github.com/postgres/postgres/blob/master/src/backend/utils/error/elog.c

PostgreSQL Internals: Node
• PostgreSQL creates a query text to a query tree.

• Query tree is made up from nodes.

• Each node has a type and related data in it.

• It is possible to create your own node types.

• More information:
https://github.com/postgres/postgres/blob/master/src/backend/nodes/READM
E

https://github.com/postgres/postgres/blob/master/src/backend/nodes/README

Let’s Implement An Equality Function
Datum

color_eq(PG_FUNCTION_ARGS)

{

}

Let’s Implement An Equality Function
Datum

color_eq(PG_FUNCTION_ARGS)

{

color *c1 = PG_GETARG_COLOR(0);

}

Let’s Implement An Equality Function
Datum

color_eq(PG_FUNCTION_ARGS)

{

color *c1 = PG_GETARG_COLOR(0);

color *c2 = PG_GETARG_COLOR(1);

}

Let’s Implement An Equality Function
Datum

color_eq(PG_FUNCTION_ARGS)

{

color *c1 = PG_GETARG_COLOR(0);

color *c2 = PG_GETARG_COLOR(1);

return c1->r == c2->r && c1->g == c2->g && c1->b == c2->b;

}

Let’s Implement An Equality Function V2
static bool

EqualPgColorExtendedNode(

const struct ExtensibleNode *target_node,

const struct ExtensibleNode *source_node)

{

}

Let’s Implement An Equality Function V2
static bool

EqualPgColorExtendedNode(

const struct ExtensibleNode *target_node,

const struct ExtensibleNode *source_node)

{

PgColorExtendedNode *targetPlan = (PgColorExtendedNode *) target_node;

}

Let’s Implement An Equality Function V2
static bool

EqualPgColorExtendedNode(

const struct ExtensibleNode *target_node,

const struct ExtensibleNode *source_node)

{

PgColorExtendedNode *targetPlan = (PgColorExtendedNode *) target_node;

PgColorExtendedNode *sourcePlan = (PgColorExtendedNode *) source_node;

}

Let’s Implement An Equality Function V2
static bool

EqualPgColorExtendedNode(

const struct ExtensibleNode *target_node,

const struct ExtensibleNode *source_node)

{

PgColorExtendedNode *targetPlan = (PgColorExtendedNode *) target_node;

PgColorExtendedNode *sourcePlan = (PgColorExtendedNode *) source_node;

return targetPlan->interceptedColor->r == sourcePlan->interceptedColor->r &&

targetPlan->interceptedColor->g == sourcePlan->interceptedColor->g &&

targetPlan->interceptedColor->b == sourcePlan->interceptedColor->b;

}

Testing
• Extensions can use PostgreSQL's own testing suite

• Make check and make installcheck

• Runs queries against database and compare the output

Packaging
• PostgreSQL is commonly used in RedHat and Debian bases operation

systems.

• For each operating system you want to run your extension on, you need
generate binaries in that particular system

• Docker is life saver

• Our open source packaging tools; https://github.com/citusdata/packaging

https://github.com/citusdata/packaging

Packaging
Minimum requirements;

• debian/pgversions

• debian/control.in

• debian/changelog

• debian/copyright

• debian/rules

• debian/compat

Packaging
• > pg_buildext updatecontrol

• > debuild -uc -us -B --lintian-opts --profile debian --allow-root

Releasing
• PostgreSQL community software repositories

• PGXN

• Your own package repository;

 You can install your package repository to a server and respond install requests
from that server.

 Managed services; packagecloud.io

Thank you
&

Questions

